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Abstract
We examine the out-of-equilibrium dynamical evolution of density profiles
of ultrasoft particles under time-varying external confining potentials in three
spatial dimensions. The theoretical formalism employed is the dynamical
density functional theory (DDFT) of Marini Bettolo Marconi and Tarazona
(1999 J. Chem. Phys. 110 8032), supplied by an equilibrium excess free energy
functional that is essentially exact. We complement our theoretical analysis
by carrying out extensive Brownian dynamics simulations. We find excellent
agreement between theory and simulations for the whole time evolution of
density profiles, demonstrating thereby the validity of the DDFT when an
accurate equilibrium free energy functional is employed.

(Some figures in this article are in colour only in the electronic version)

Density functional theory (DFT) is a very powerful tool for the quantitative description of
the equilibrium states of many-body systems under arbitrary external fields. It rests on the
exact statement that the Helmholtz free energy of the system, F[ρ], is a unique functional
of the inhomogeneous one-particle density ρ(r). Moreover, the equilibrium profile ρ0(r)

minimizes F[ρ] under the constraint of fixed particle number N [1]. The task is then to
approximate the unknown functional F[ρ] from which all equilibrium properties of the system
follow. Much more challenging is the problem of studying out-of-equilibrium dynamics of
many-body systems, for which analogous uniqueness and minimization principles are lacking.
In this letter, we present results based on a recently proposed dynamical density functional
theory (DDFT) formalism and we demonstrate that the latter is capable of describing out-of-
equilibrium diffusive processes in colloidal systems at the Brownian timescale.

We are concerned with the dynamics of typical soft-matter systems, such as suspensions of
mesoscopic spheres and polymer chains in a microscopic solvent [2]. The enormous difference
in mass of the suspended particles and the solvent molecules implies a corresponding separation
in the relaxational timescales of the two. At times of the order of the Fokker–Planck scale,
τFP ∼ 10−14 s, the solvent coordinates are already relaxed to thermal equilibrium. On the
1 Also at: Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225
Düsseldorf, Germany.
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Brownian diffusive timescale, τB ∼ 10−9 s, the momentum coordinates of the solute particles
relax to equilibrium with the heat bath of the solvent molecules and thus a statistical description
involving only the positions of the colloids is feasible [3]. In this regime, the evolution of the
coordinates {r1(t), r2(t), . . . , rN (t)} of the N colloidal particles is described by the set of
stochastic Langevin equations

dri(t)

dt
= −�∇ri

[∑
j �=i

V (|ri − r j |) + Vext(ri , t)

]
+ wi (t). (1)

In equation (1) above, V (|ri − r j |) is the pair (effective) interaction potential between
the mesoscopic particles [2], Vext(ri , t) is the externally acting potential and wi (t) =
[wx

i (t),wy
i (t),wz

i (t)] is a stochastic term representing the random collisions with the solvent
molecules and having the properties

〈wα
i (t)〉 = 0 and 〈wα

i (t)wβ

j (t
′)〉 = 2Dδi jδαβδ(t − t ′), (2)

where the averages 〈· · ·〉 are over the Gaussian noise distribution and α, β = x, y, z, the
Cartesian components. The constants � and D stand for the mobility and diffusion coefficients
of the particles, respectively, and the Einstein relation gives �/D = (kB T )−1 ≡ β. Applying
the rules of the Itô stochastic calculus, Marini Bettolo Marconi and Tarazona [4, 5] recast the
above equations into the form

�−1 ∂ρ(r, t)

∂ t
= ∇r[kB T ∇rρ(r, t) + ρ(r, t) ∇rVext(r, t)]

+ ∇r

[∫
d3r ′ 〈ρ̂(r, t)ρ̂(r′, t)〉 ∇rV (r − r′)

]
. (3)

Here, ρ̂(r, t) = ∑
i δ(ri (t) − r) is the usual one-particle density operator and ρ(r, t) =

〈ρ̂(r, t)〉 is the noise average of this quantity. Up to this point, all is exact. Now, the
following physical assumption (A) is introduced: as the system follows its relaxation dynamics,
the instantaneous two-particle correlations can be approximated by those of a system in
thermodynamic equilibrium with a static one-particle density ρ(r) that is the same as the
noise-averaged dynamical one-particle density ρ(r, t). Then, equation (3) can be cast into a
form involving exclusively the equilibrium density functional F[ρ] as [4, 5]

�−1 ∂ρ(r, t)

∂ t
= ∇r ·

[
ρ(r, t) ∇r

δF[ρ(r, t)]

δρ(r, t)

]
, (4)

with the free energy functional

F[ρ] = kB T
∫

d3r ρ(r){ln[ρ(r)�3] − 1} + Fex[ρ] +
∫

d3r Vext(r, t) ρ(r). (5)

The dynamical equation of motion (4) was in fact first derived in a phenomenological
way by Dietrich et al [6]. In carrying out concrete calculations with the theory put forward
above and in comparing them with Brownian dynamics (BD) simulation results based on the
microscopic equations of motion, equation (1), two sources of possible discrepancies exist:
first, the fundamental assumption (A); and second, the approximate nature of the equilibrium
density functional Fex[ρ] of equation (5). In this work we focus our attention on ultrasoft
particles for which a very accurate and simple functional F[ρ] is known, namely the mean-
field or random-phase approximation (RPA) functional given by equation (6) below. This
guarantees that one can explore the accuracy of the fundamental assumption (A) under well-
defined external conditions.

Consider a one-component system of ultrasoft particles. It has been demonstrated that for
such systems the following RPA functional is quasi-exact [7–13]:

Fex[ρ] = 1
2

∫ ∫
d3r d3r ′ V (|r − r′|)ρ(r)ρ(r′). (6)
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Equation (4) now takes, with the help of equations (5) and (6), the form

�−1 ∂ρ(r, t)

∂ t
= kB T ∇2

rρ(r, t) + ∇rρ(r, t) ·
∫

d3r ′ ∇rV (|r − r′|)ρ(r′, t)

+ ρ(r, t)
∫

d3r ′ ∇2
r V (|r − r′|)ρ(r′, t)

+ ∇rρ(r, t) · ∇rVext(r, t) + ρ(r, t) ∇2
r Vext(r, t). (7)

Given an initial density field ρ(r, t = 0) and a prescribed external potential Vext(r, t),
equation (7) can be solved numerically to yield ρ(r, t). In this work we apply an ultrasoft
Gaussian pair potential between the interacting particles that has been shown to describe the
effective interaction between the centres of mass of polymer chains in athermal solvents [9, 14]:

V (r) = ε exp[−(r/σ)2]. (8)

We set ε = kB T , providing the energy unit for the problem, whereas σ , which corresponds
to the gyration radius of the polymers, will be the unit of length henceforth. Accordingly, the
natural timescale of the problem, providing the unit of time in this work, is the Brownian
timescale τB = σ 2/(ε�). Equation (7) is solved iteratively using standard numerical
techniques, and for a variety of time-dependent confining external potentials Vext(r, t) to
be specified below.

BD simulations of equation (1) are also straightforward to carry out. The Langevin
equations of motion including the external field are numerically solved using a finite time step
�t = 0.003 τB in all simulations, and the technique of Ermak [15, 16]. In order to obtain the
time-dependent density ρ(r, t) we perform a large number Nrun of independent runs, typically
Nrun = 5000, and average the density profile over all configurations for a fixed time t .

We focus on external fields that correspond to a sudden change, i.e., Vext(r, t) =
�1(r)(−t) + �2(r)(t). These force the system to relax from the equilibrium density
ρ1(r) = ρ(r, t < 0), compatible with the external potential �1(r), to the new equilibrium
density ρ2(r) = ρ(r, t → ∞), corresponding to the external potential �2(r). Important
questions related to such processes are those of what the typical relaxation time τ is for
such a procedure and how the system crosses over from one equilibrium density to the
other. We consider confinements of two kinds: spherical ones, Vext(r, t) = Vext(r, t), where
r = |r|; and planar ones between two walls perpendicular to the Cartesian z-direction,
Vext(r, t) = Vext(z, t). In these cases we obtain ρ(r, t) = ρ(r, t) and ρ(r, t) = ρ(z, t),
respectively, and the solution of equation (7) is greatly simplified since the integrals take the
form of one-dimensional convolutions that can be evaluated very rapidly by the use of fast
Fourier transform techniques.

Three different external confinements have been specifically investigated—two spherical
ones:

V (1)
ext (r, t) = �0[(r/R1)

2(−t) + (r/R2)
2(t)], (9)

V (2)
ext (r, t) = �0[(r/R1)

10(−t) + (r/R2)
10(t)]; (10)

and one slab confinement:

V (3)
ext (z, t) = �0[(z/Z1)

10(−t) + φ(z/Z2)
10(t)]. (11)

The energy scale �0 sets the strength of the confining potential and is fixed to �0 = 10 kB T
for all three confinements. The only difference between the external potential for times t < 0
and for t > 0 lies in the different length scales R2 �= R1, for equations (9) and (10), and
Z1 �= Z2, for equation (11). For each confinement we consider two cases that give rise to two
different dynamical processes: R1 < R2 (Z1 < Z2), enforcing an expansion of the system, and
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Figure 1. DDFT (solid curves) and BD (noisy curves) results for the time development of the
radial density profiles ρ(r) in the spherical confining potential V (1)

ext (r, t) with (a) R1 = 4.0 and
R2 = 6.0 and (b) R1 = 6.0 and R2 = 4.0. The profiles shown are for the times t0 = 0, t1 = 0.06,
t2 = 0.18, t3 = 0.54 and t4 = 2.0, all in τB-units. The last time is practically equivalent to t = ∞,
since the system there has fully relaxed to equilibrium. In all figures, thick black curves denote the
initial and thick grey ones the final static profile.

R1 > R2 (Z1 > Z2), bringing about a compressionof the same. For the spherical confinements
an additional parameter is the particle number N = ∫

d3r ρ(r, t) which is a conserved quantity,
as is clear from equation (4) that has the form of a continuity equation. N enters the formalism
through the normalization of the density field at t = 0. For both spherical confinements, the
particle number is N = 100. In the slab confinement, equation (11), the conserved quantity is
the density per unit area ρ0 = ∫

dz ρ(z, t). We choose ρ0σ
2 = 10. In all cases examined, the

typical relaxation time was found to be of order τB; after typically t = 2 τB, the system fully
relaxes into the new equilibrium profile.

In figure 1 we show the results for the harmonic confining potential of equation (9). It
can be seen that the theory reproduces the time evolution of the density profile, for both the
expansion (figure 1(a)) and the compression (figure 1(b)) processes. An asymmetry of the two
processes can already be discerned: the compression is not the ‘time reverse’ of the expansion
and this effect will be much stronger in the examples to follow. Although the profiles of the
system are very different from those of an ideal gas, i.e., effects of the interparticle interaction
are present, the confining potential is smooth enough that the profiles are devoid of pronounced
correlation peaks.
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Figure 2. DDFT (solid curves) and BD (noisy curves) results for the time development of the
radial density profiles ρ(r) in the spherical confining potential V (2)

ext (r, t) with (a) R1 = 4.0 and
R2 = 5.0 and (b) R1 = 5.0 and R2 = 4.0. The profiles shown are for the times t0 = 0, t1 = 0.03,
t2 = 0.06, t3 = 0.12, t4 = 0.24, t5 = 0.48 and t6 = 2.0 (in units of τB).

The situation is different for the external potential of equation (10). Here, the power-law
dependence is much steeper, so the Gaussian fluid develops correlation peaks close to the
‘walls’ of the confining field. The dynamical developments of the profiles for the expansion
and compression processes are shown in figure 2. Here, the asymmetry between the expansion
and the compression processes is evident. In the former case, seen in figure 2(a), the expansion
of the confining potential leaves behind a density profile that has very strong density gradients
close to the boundary of the initial confinement. Since the latter ceases to act at t = 0, this
leaves at t = 0+ instantaneously a region R1 < r < R2 that is devoid of particles but in
which the new external potential is essentially zero. This leads to a collective diffusion of the
particles towards the boundaries set by the new potential. Correspondingly, the high-density
peaks decrease rapidly and leak outward. In the inner region, r ≈ 0, of the profile, the
dynamics is much slower and the relaxation to the final plateau there takes place at the end of
the process, thereby causing the final development of the new, weaker correlation peaks close
to the location of the boundary, r � R2.

The compression process, depicted in figure 2(b), runs very differently. There, the initial
‘closing’ of the potential from R1 to R2 < R1 leaves at t = 0+ a region of high density at
R1 < r < R2 that now finds itself within a strongly repulsive external field. There is an
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Figure 3. The second moment of the radial density profile, m2(t), defined in equation (12) plotted
against the time t for the spherical confinement V (2)

ext (r, t). Circles correspond to radii R1 = 4.0
and R2 = 5.0 (expansion) and squares show the resulting curve for the inverse process, R1 = 5.0
and R2 = 4.0 (compression). The curves are the analytical fits shown in the text. Solid curve:
equation (13); long-dashed curve: equation (14). The arrows mark the characteristic timescales
defined in these two equations.

extremely rapid shrinking there, accompanied by the development of very high correlation
peaks that actually ‘overshoot’ in height with respect to the final equilibrium profile. Initially,
the region in the centre of the sphere remains unaffected; only as the high peaks start diffusing
does material flow toward the centre, and at the latest stage of the dynamics the profile at r = 0
reaches its new equilibrium value.

In order to quantify better this asymmetry and also extract characteristic timescales for
the two dynamical processes, we consider the second moment of the density, m2(t), defined
through

m2(t) =
∫

d3r r2ρ(r, t). (12)

The quantity m2(t) is a quantitative measure of the spread of ρ(r, t) around the centre of
the external field and its time evolution is shown in figure 3. Let the superscript ‘+’ denote
the expansion and the superscript ‘−’ the compression process. Obviously, m±

2 (0) = m∓
2 (∞)

holds. We notice that for both processes m2(t) is a monotonic function of t ,but some interesting
differences arise when one fits the two curves by analytic functions, shown as lines in figure 3.
The expansion can be very accurately described by a single exponential:

m+
2(t) = m+

2(0) + [m+
2(∞) − m+

2(0)][1 − exp(−t/τ +)], (13)

with the characteristic timescale τ + = 0.287 τB. However, a double-exponential fit is necessary
to parametrize the compression process, namely

m−
2 (t) = m−

2 (∞) + A− exp(−t/τ−
1 ) + [m−

2 (0) − m−
2 (∞) − A−] exp(−t/τ−

2 ), (14)

with the fit parameter A− = 0.240 σ−2 and the two characteristic timescales τ−
1 = 0.036 τB

and τ−
2 = 0.189 τB. Since τ−

1,2 < τ +, it follows that the compression process is at any rate
faster than the expansion one. The occurrence of the two distinct timescales τ−

1 � τ−
2 in the

compression requires some explanation. The fast process that takes place at times t ∼ τ−
1

corresponds to the abrupt shrinking of the profile in the wings of the distribution and is caused
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Figure 4. DDFT (solid curves) and BD (noisy curves) results for the time development of the
linear density profile ρ(z) in a slab confining potential V (3)

ext (z, t) with (a) Z1 = 4.0 and Z2 = 5.0
and (b) Z1 = 5.0 and Z2 = 4.0. The profiles shown are for the times t0 = 0, t1 = 0.06, t2 = 0.24
and t3 = 2.0 (in units of τB).

exclusively by the ‘closing’ of the external field. This is the same mechanism as brings about
the overshooting of the density peaks. Once this is over, diffusion within the now already
confined system takes place and the second characteristic timescale, τ−

2 , is solely determined
by the interaction potential V (r) and the average particle density. In the expansion process,
the first mechanism is absent. Thus a single timescale, τ +, shows up, which is of intrinsic
origin exclusively. Since stronger density gradients occur during the compression than during
the expansion process, even the larger of the two timescales of the compression, τ−

2 , is smaller
than τ +. The denser the system, the faster the collective diffusion towards equilibrium.

Finally, we turn our attention to the slab confinement. The results from theory and
simulation are shown in figure 4. Once more it can be seen that the DDFT offers an excellent
description of the dynamics of the system. The same asymmetry between expansion and
compression as was seen in the spherical confinement also shows up for the case of the slab,
including the overshooting of the peaks during the compression process. In addition, the
density profiles develop, during their evolution, secondary oscillations that are also very well
reproduced by the theory.

In summary, we have demonstrated that the dynamical density functional theory of Marini
Bettolo Marconi and Tarazona [4, 5], when supplemented by an accurate equilibrium density
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functional, can provide an excellent description of out-of-equilibrium dynamics of colloidal
systems at the Brownian timescale. The accuracy of the DDFT formalism has already been
successfully tested for the system of one-dimensional hard rods [4], for which the exact density
functional F[ρ] is known. To the best of our knowledge, this is the first study of the validity
of DDFT in three dimensions. As the phenomenology in 3D is much richer than that in 1D,
including the possibility of phase transitions, many interesting paths to future applications
open up.

Discussions with Andrew Archer, Bob Evans, Wolfgang Dietrich and Pedro Tarazona are
gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft
through the SFB TR6.
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